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SUMMARY 
An obstacle, represented by a delta function, is placed on the bed of a three dimensional stream and, as a 
result, a steady "V" shaped surface wave pattern develops downstream. The rate of decay of the transient 
motion is determined and existence and uniqueness of the steady pattern are established for all values of the 
stream velocity. Asymptotic expressions for the steady state wave amplitude, valid far from the obstacle, 
are obtained. Near the border of the wave pattern, expressions are obtained which are uniform in the polar 
angle. 

Introduct ion 

A three dimensional stream of  constant depth h flows with constant velocity U. At time 

t = 0 a fixed obstacle, represented by a delta function, is introduced onto the stream bed. 
As a result, a transient wave motion is created on the surface, downstream from the ob- 

stacle, which eventually develops into a "V"-shaped steady pattern. The purpose of this 
article is 

1) to obtain the rate of  decay of the transient motion as t ~ oo; 
2) to establish the existence and the uniqueness of  the steady pattern, in particular for the 

critical velocity U = (gh)~; 
3) to obtain asymptotic expressions for the steady state wave amplitude which are valid for 

large distances from the obstacle, uniformly in the polar angle, in particular near the 
border of the " V "  for critical, U = (gh) ~, and supercritical, U > (gh) ~, velocity. 

The two dimensional version of this problem has been studied by Palm [10]. He obtains a 

solution by Fourier analysis, obtains the rate of decay of the transient motion as t ~ o% 
and shows the existence and uniqueness of  a steady wave pattern for non-critical flow 
velocities. A remarkable feature of the steady pattern is that, far f rom the obstacle, it is 
substantially different for subcritical than for supercritical velocities. For U < (gh) ~ there 
exists a sinusoidal "resonance" wave extending downstream to infinity without decay in 

amplitude whereas, for U > (gh) +, the steady pattern decays exponentially in distance from 
the obstacle. This steady pattern is also discussed by Lamb [3] who constructs it directly 
using a radiation condition. 

I t  is relevant to include a discussion of previous results for the closely related problem: 
to determine the transient and steady state wave motion resulting f rom the continued 
application of a pressure point, beginning at t = 0, on the surface of the three dimensional 
stream. In fact, since these results can be easily established for the present problem, we shall, 

Journal of Engineering Math., Vol. 10 (1976) 1-21 



2 ~ H a r b a n d  

in our treatment of it, lay stress on those aspects which have not received adequate attention 
in the problem of the pressure point, i.e., points 1)-3) above. 

The two dimensional pressure point problem has been investigated by Stoker [1] who 
finds that the steady pattern is similar to that of Palm described above. Stoker, moreover, 
also investigated the case of critical velocity and showed that, as t ~ c~, the amplitude of 
the transient motion grows large. From this he concludes that a steady state pattern does 
not exist for critical speed. This surprising result raises the question of whether a steady 
pattern exists for critical speed in the three dimensional problem. 

Havelock [4] has considered the three dimensional, steady pressure point problem (or 
equivalently: a ship moving with constant velocity U on water of finite depth h). For non- 
critical velocities he constructed directly a steady state solution, using a radiation condition, 
and was able to obtain its asymptotic description by the method of stationary phase. He, 
also, found a remarkable difference between the sub- and super-critical cases. For 
U < (gh) ~ the pattern is similar to Kelvin's ship wave pattern [5] : it has two sets of waves, 
transverse and diverging, contained in a "V"  shaped sector behind the point which widens 
out to the downstream half plane as U ~ (gh)~. For U > (gh) ~ only the diverging waves 
are present in the sector and it narrows down to the half line in the flow direction as U ~ oo. 

Cherkesov [11] has studied the time-dependent problem and has obtained an asymptotic 
description, valid far from the pressure point, of the transient wave front for all values of 
U. For subcritical speeds, Smorodin [12] has considered a pressure point of variable strength 
moving with variable speed. 

In the asymptotic analysis of the pattern of Havelock described above, one encounters a 
difficulty near the border of the "V"  shaped sector since the method of stationary phase 
doesn't yield an expression which is uniform in the polar angle. A similar situation occurs 
in the ship wave pattern of Kelvin, where since the pattern is O(r -~) within the sector 
and O(r -~) on its border, it is desirable to obtain an expression which shows the transition 
between these two orders of magnitude as the border is approached for fixed r. Ursell [7] 
has obtained such an expression, in terms of the Airy function, by utilizing the uniform 
asymptotic method of Chester, et aL [6]. Such an investigation does not seem to have been 
carried out for Havelock's pattern. It is required, in particular, for the critical and super- 
critical cases since, for subcritical speed, the analysis of Ursell is applicable. 

In Theorem 1, we give the decay rate of the transient motion and thereby show the 
existence of a steady state pattern for all U > 0 including the critical value. In Theorem 3, 
we show that this pattern, which is similar to Havelock's, is unique and located down- 
stream from the obstacle. Finally, we obtain uniform asymptotic expressions near the border 
of the steady state pattern. For U < (gh) ~ the result is similar to Ursell's for the ship wave 
pattern. For U = (gh) ~ we use a method of Bleistein [8] to obtain a uniform expression 
in terms of Fresnel integrals. In this case the border of the wave system is the axis transverse 
to the flow direction and, taking the limit in our expression for fixed r, we find that the wave 
amplitude tends to zero as the axis is approached. For U > (gh) ~ we use Chester's method 
to obtain a uniform expression in terms of the derivative of the Airy function and find, 
again by taking the limit for fixed r, that the limiting wave amplitude on the border of the 
system is O(r-~). 

The approach of arriving at the steady state motion via an initial value formulation is 
due to Stoker [1]. Its advantage is that the questions of existence and uniqueness of the 
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steady state motion are settled in a natural way without having to impose a radiation 

condition. 
The author is grateful to Professors F. John and J. J. Stoker for their assistance in the 

preparation of this article. 

1. The initial boundary value problem 

We consider an initially uniform potential stream flow �9 = U x  defined in the slab 
- h  N y < 0, - o o  < x, z < oe. At t = 0 an obstacle is introduced onto the stream bed 

y = - h  whose height off the bed is given by 7(x, z)a( t )  where 7(x, z) is assumed continuous 
and of compact support and a(t) which serves to create the obstacle has a continuous second 
derivative and satisfies a(0) = a'(O) = a"(0) = 0 and a(t) = 1, t > e > 0. For  t > 0 we 

seek a solution in the form 

�9 (x, y,  z, t) = U x  + q)(x, y,  z, t) 

defined in the region - h  + ~,(x, z )a( t )  < y < ti(x, z, t) where the free surface y = ti(x, z, t) 

is unknown a priori. Following Stoker [1], the boundary conditions are linearized about  
the planes y = - h  and y = 0 and one obtains the following initial boundary value problem 

for ~o defined in the original slab: 

D.E. q)x~+(Pry + q ) z z = 0 ,  t > 0 ,  - h < y < 0 ,  (1.1) 

I.C. ~0(x, y, z, 0) = 0, - h  < y < 0, (1.2) 

I.C. ~ot(x, y,  z, O) = O, - h  < y <= O, (1.3) 

B.C. 9 t i + q ~ t +  U~0~=0,  y = 0 ,  t > 0 ,  (1.4) 

B.C. tl t +  Uti~ - ~oy = O, y = O, t > O, (1.5) 

B.C. U?~a + Ta' - (pr = O, y =  - h ,  t > O. (1.6) 

By differentiation and elimination, conditions (1.4) and (1.5) are replaced by the single 
condition 

B.C. qgtt + uZ~ox~ + 2Uq)xt + g %  = O, y = O, t >= O. (1.7) 

The solution of the initial boundary problem (1.1), (1.2), (1.3), (1.6), (1.7) is obtained by 
using the Fourier transformation in the variables x and z. 

~(r y, ~, t) = (2re) -1 q)(x, y, z, t) e-ie~-i~Zdxdz.  
cO ~ --oO 

Our problem then goes over into the following. 

- r  + Corr - ~2~o = O, 

Co(i, y,  ~, O) = O, 

Cot(~, y ,  ~, O) = O, 

i~U~a + ~a' - ~o r = O, 

~ g t t  - -  ~ 2 U 2 ( ~  -.[- 2i~U~o t + gCo r = O, 

- h  < y < 0, t > 0, (1.1') 

t = 0, (1.2') 

t = 0,  (1 .3' )  

y = - h ,  t >__ O, (1.6') 

y = O ,  t>__O. (1.7') 
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The general solution to (1.1') is, setting p = (~2 + ~2)�89 

~(~, y, ~, t) = A(~, ~, t) e ~ + B(~, ~, t) e -py, t > 0. 

Inserting (1.8) into (1.7') and (1.6') respectively, the following two equations result: 

Art +Btt  - ~2U2(A + B) + 2i~U(At + Bt) + pg(A - B) = O, t > O, 

i~U~a(t) - p(A e -~ - -  B e "h) + ~a = O, 

Letting 

C(~, ~, t) = A(~, (, t) + B(~, ~, t), 

D(~, ~, t) = A(~, (, t) -- B(~, ~, t). 

t > O .  

(1.8) 

(1.9) 

(1.10) 

(1.11a) 

(1.1 lb) 

we substitute C and D in place of A and B in (1.9) and (1.10) and then eliminate D, obtaining 
an equation for C. 

Ctt + 2i~UC t + (pg tanh ph - ~202)C - g ~  (i~Ua + a'). (1.12) 
cosh ph 

From (1.8), (1.2'), and (1.3') we deduce the following initial conditions for C: 

C(~, (, O) = O, Ct(~, ~, 0) = 0. (1.13a, b) 

The set of  equations (1.12), (1.13a, b) constitute an initial value problem for the function 
C(~, ~, t) in the variable t. Solving it by variation of  parameters one gets 

C(~, (, t) - co~g~/ph I i  K(t - s)[i~Ua(s) + a'(s)]ds 

where 

K(t) = e-i~Vt(g p tanh ph) -~ sin [(gP tanh ph)~t]. 

Integrating by parts one obtains 

C(~, ~, t) - cos-h99ph f l a(s)[i~ug(t - s) - g ' ( t  - s)]ds. 

Now setting y = 0 in (1.8), noting (1.1 la), taking the inverse transform, and letting e ~ 0 
in the definition of a(t) one obtains 

q)(x,O,z, t)= g f f  f ~_ ~e'~X+'~fl -- 2~- o~ ~ cosh ph [i~UK(t - s) + K'(t - s)]dsd~d(. 

Then from (1.4), using the fact that  K(t) satisfies the homogeneous form of  (1.12), we 
obtain the surface shape 

t1(x'z't) = 2re J _ ~  oo coshph  1 - pgtanhph K(t - s)ds did(. (1.14) 

Carrying out the s-integral, going over to the polar coordinates 

h~ = u cos (p, x = hr cos 0, 

h~ = u sin ~o, z = hr sin 0, 
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and setting k 2 = UZ/gh one finally gets 

lf=fo 9u[ k2 cos2 r 
q(x,  z, t) = ~ -~ c o s h u  k z cos z p - t a n h u / u  

( tanh u/u) -~ e -  ~,(o/h)~(k . . . .  ~, + (, tanh ,) ~) 
+ 

2(k cos cp + ( tanh u/u) ~) 

_ ( tanh u/u) ~ e -i'(~ ~P-(utanhu)~) q . 
[ e  . . . .  ~176 
J 

(1.15) 

2.  T h e  u n s t e a d y  d e v e l o p m e n t  - E x i s t e n c e  o f  a s t e a d y  s t a t e  f l o w  

We first establish the existence of  a steady state flow as t(gh) ~ ~ oo for  all values of  k > 0 
including the "cr i t ical"  case k = 1 and, moreover ,  obta in  an est imate on the rate of  decay 
of  the t ransient  flow with time. We then obtain  a representat ion of  the steady state flow as 

a single integral. 
We consider (1.15) for  fixed values of  cp and  take the u-integral to be a complex integral 

a long the positive real axis f r o m  zero to infinity. Since the entire integrand is analytic in u 

in a ne ighborhood  of  the real axis, as can be seen f rom (1.14), the pa th  of  integration, except 
for  the origin, can be deformed  within this ne ighborhood  according to Cauchy ' s  theorem. 
This allows one to de fo rm the pa th  of  integrat ion abou t  singular points  o f  each separate  

te rm of  the u-integral as long as such a deformat ion  is carried out  in the same manner  for  
all o f  the terms. 

The  only singularity of  the t ime independent  t e rm is the pole u(cp) defined implicitly by  

the equat ion 

k z cos z ~o --  t anh  u(q~)/u(cp) = 0, u(q~) > 0. (2.1) 

Factor ing,  one sees tha t  u(~o) is also a pole of  the first or second t ime dependent  terms 
according as cos ~0 is greater  or  less than  zero. The  funct ion u(~o) plays an impor tan t  role 

and  we summar ize  its propert ies  for  future reference. Since u(q~) has the double symmet ry  
u(~o) = u(rc - ~o) and  u(~o) = u(-q~)  it is sufficient to consider it on the interval [0, n/2]. 
Its derivative is given by 

kZu(q~) sin 2~p k 2 sin 2~o 
= , o ( 2 . 2 )  

u'(~o) = tanh  u(~o)/u(~o) - sech z u(~o) I(tanh u/u) I,=,(~) 

The behavior  of  u(q0 differs according to the cases k 2 < 1, k 2 = 1, k 2 > 1. For  k z < 1, 

u(~o) is defined on the entire interval [0, n/2] and  u(0) = Uo > 0 is defined by k z = tanh Uo/U o. 

F r o m  (2.2), u'(0) = 0 and u(~o) is increasing on [0, n/2]. Fo r  k = 1 u(~o) is again defined 

on [0, n/2] however  u(0) = 0. In  the ne ighborhood  of  the origin one has f rom expanding 
(2.1) tha t  u+(0) = x/3 and  u(q~) is again increasing on [0, n/2]. Fo r  k 2 > 1, u(~o) is defined 
on a p roper  sub-interval  o f  [0, ~z/2] namely  [~Oo, n/2] ~o o > 0 where cos cp o = 1/k and 
moreove r  u(~po) = 0. F r o m  (2.2) one has u'(~o) --+ oo as q~ --+ ~o o. In  all cases as ~o --+ n/2 
one must  have u --+ oo hence tanh  u -- 1 and  thus u(~p) ~ (k cos ~o) -2.  In  part icular  
u(~o) ~ oo as qo + n / 2 .  
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We now assert that one can deform the path of  the u-integral (into a semi-circle of  
radius e, say) about the pole u = u(q0 in such a way that the time dependent terms in (1.15) 
will tend to zero for large time. In particular 
Theorem 1. For r~o[ ~ zt/2 (re/2 < I(p[ < zc) / f  the path of  u-integration is deformed below 
(above) the pole u = u(~o) then both time dependent terms in (1.15) will be of  order 
O[(t(g/h)+) -~] when k < 1 and O[(t(9/h)4) --~] when k > 1, as t ~ ~ .  Hence for all k > 0 
there exists a steady state flow which is given by 

~/(r, 0) = 2re J_~ cosh u(k 2 cos 2 q~ - tanh u/u) dud(p (2.3) 

where the path of  u-integration is deformed below (above) the pole u = u((o) for I~ol < n/2 
(~/2 < I~01 _-< ~). 
Proof: see Appendix A. 

We shall be interested in the evaluation of  (2.3) for large r. In this, the details of the 

obstacle play a negligible role and we will henceforth take ~ = 2n6(x, z) = 1. Moreover, 
we have the following result which enables us to significantly simplify (2.3). 
Theorem 2. For large r, (2.3) can be expressed as a single integral in the following form 

~ /2 H(q~) cot ~ou((p)u'(~p)d r"(~176176176 
r/(r, 0) = - I m  d(p + O(log r/r), (2.4) 

j -~/2 cosh u(~o) 

I la /fcos(~o - 0) >O and u(q~)is defined 
where H(qg)= ,, otherwise. 

Proof" see Appendix B. 
This single integral representation for rl(r, O) is a convenient form for the application of 

the method of  stationary phase and, as we will show, yields contributions which for each 
k > 0 are of a lower order than O(log r/r) and hence it will determine the dominant features 
of the wave pattern for large r. Accordingly, we will henceforth neglect the term of  order 

O(log r/r). 
It will be more convenient to go over to the new variable u = u((p) in (2.4). Using the 

properties of u(~o) listed above, letting Uo = 0 when k > 1, and setting for u > Uo and 

101 # ~/2 

p+_(u) = (u tanh u) ~ + tan O(k2u z - u tanh u) ~ 

where the branch cut is taken from u o to - m, (2.4) becomes 

f ~ u G _ ( u ) e  irk-'p-(u)e~176 
r/(r, 0) = Im c o ~ ~ ~ Z  ]]~ du 

fu uG + (U) e ~rk- 'p + (u) e o s  0 

- -  lm o cosh u[(k2u/tanh u ) -  1] ~ du, (2.5) 

1, u-  lp +_ (u) cos O > 0 
where G+_(u)= 0, otherwise. 
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3. Uniqueness of the steady state flow 

We now show that the location of the steady state wave pattern is uniquely determined and 
can exist only downstream from the obstacle. This result follows directly from (2.5) and 
hence no radiation condition needs to be imposed. 

Since t/(r, - 0 )  = t/(r, 0) as can be seen from (2.4), it is sufficient to take tan 0 > 0. 

Then p+(u) is strictly increasing on [Uo, oo) and by the Riemann-Lebesgue Lemma the 
second integral in (2.5) will be of  order O(r-1). As for p_ (u), fixing 0 one gets the following 

equation for its stationary points: 

[(kZu/tanh u) - 1]�89 2 u + (tanh u/u)] 
tan 0 = = g(u) (3.1) 

2[k 2 - (tanh u/u)] + u[(tanh u/u)'] 

{U >Uo, k r  l 7z 
where = and [0l r - - .  

U>Uo, k = l  2 
Lemma 1. For any f ixed k > 0, i f  u = u~ is a root of(3.1) with u, > 0, then p_(u,) > O. 

Proof." Estimating from (3.1) with u = u~, 

[(kZu/tanh u) - 1]~[sech 2 u + (tanh u/u)] 
tan 0 < 

2[k 2 - (tanh u/u)] 

(utanhu)~ 1 I u 1 
= [k2u 2 - ( u t a n h u ) ]  ~ 2 c o s h u s i n h u  + 1 

(u tanh u) ~ 
< 

[k2u 2 - (u tanh u)] ~ 

and the result follows. 
We now prove the following uniqueness result: 

Theorem 3. Any stationary point u = ur of  p_(u), with u r > O, is in the range of  integration 

of  the first integral of  (2.5) for at most one value of  O, and that value lies in [0, n/2). 

Proof." Since 0 < tan 0 < 0% each stationary point of p_(u), u = ur > 0, i.e., root of 
(3.1), is obtained for two different values of 0: 02 in [0, n/2) (downstream), and 02 = 01 - n 
(upstream). However, in view of Lemma 1, one has G_(ur) > 0 for 0 = 01 and G_(u,) < 0 
for 0 = 02. Hence u, is in the range of integration only for 01. 

In Theorem 3, the special cases 10l = n/2 and u~ = 0 are omitted, but we shall sub- 
sequently show that, for them, there is no contribution to the integral. 

4. Flow at sub-critical speed 

We now turn to the asymptotic evaluation of (2.5) for large r, taking first the subcritical 
case 0 < k < 1. We find that the ordinary method of  stationary phase yields a Kelvin- 
type wave system of  two components existing in a sector 0 < 101 < 0~ downstream from 
the obstacle. Within the sector, that is, for 0 < [0[ < ok -- 6 the wave amplitude is of  
order O(r -~) uniformly in 0 and on the border of the sector, I01 = 0~, is of order O(r-~). 
In the transition region near the border, ok -- 6 < 10[ < ok, the ordinary method of 
stationary phase does not yield an expansion uniform in 0, so we use a method of Chester, 
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et al. [6], obtaining a uniform expansion in terms of an Airy function. We show finally 

that for large depth, the pattern resembles the well-known "ship wave" pattern produced 

by a pressure point moving on water of infinite depth. 

We first investigate the distribution of stationary points of p_(u)  as 0 varies. We recall 

that these are given by the roots of (3.1). Now in the present case 9(u) is positive u > u o 

and g(Uo) = 0. Writing g(u) in the form 

k[(u/tanh u) - (uo/tanh Uo)]~(sech 2 u + tanh u/u) 
g(u) = 

(tanh Uo/Uo) - (tanh u/u) + tanh z u - tanh z Uo + Uo2k 4 -b k 2 - 1 

and fixing k, one finds that 9(u) is increasing on an interval [0, u,,] u,, > 0, attains a maxi- 

mum 9(u") = gm and decreases on [u", oo) with lira 9(u) = 0 as u ~ oo. Moreover, as 

k ~ 1 _, one has u o ~ 0 and the value of 9,, increases without bound. Thus for each fixed 

k with 0 < k < 1 and each 0 such that 0 < tan 0 < gin, (3.1) yields two distinct stationary 

points u = u t ,  ud with u0 < u t < u , , < u a <  m. As t a n 0 ~ 0 m  the stationary points 
coalescence and for tan 0 = 0 one has only the single stationary point u = ut = Uo. There- 

fore, taking into account Theorem 3, the pattern exists in the downstream sector 
0 < 10l < Ok < ~z/2, where 0~ = tan -1 g", and as k -~ 1_, the sector widens out to the 

half plane x > 0. 
As for the asymptotic wave amplitude: within the sector, that is, for fixed 0 with 

0 < 10l < 0~ the distinct stationary points ut and Ud each yield a contribution of order 
O(r-~). As 0 varies, these contributions generate two distinct wave systems whose level 

curves are given by the parametric equations 

rp_(u) cos 0 = constant, tan 0 = g(u) 

where Uo < u < u m gives a transverse system and u" < u < oe a diverging system. On the 

border of the sector [0[ = 0~ the stationary points ut, Ud coalesce to a single stationary 

point u =Um of second order yielding a contribution of order O(r-~).  Thus the pattern 

resembles the pattern obtained by Havelock in the case of a pressure point moving on 

water of finite depth with subcritical velocity [4]. 

In the neighborhood of the border: 0~ - ~ < [01 < ok the ordinary method of stationary 

phase does not yield an expansion uniform in 0 due to the proximity of the stationary 

points. Instead, we use the method of Chester et al., as described in Sirovich [9]. The idea 

is to introduce a change of variables u = u(t) so that the phase function goes over into a 

special cubic form in t 

k- lp_(u( t ) )  cos  0 = - ? / 3  + a2t + b 

where the parameter a characterizes the proximity of the stationary points, It has been 
shown [6] that the transformation u = u(t) will be 1-1 on the interval of integration, that 

is, u'(t) ~ O, i f a  and b are chosen so that t = - a ,  a correspond to u = ut, ua respectively, 
which leads to 

a 3 = �88 -~ cos O[p_(ua) -- p_(ut)], 

b = �89 -1 cos O[p_(u~) + p-(ut)]. 
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The expression (2.5) then becomes,  after neglecting the second integral which is of  order  

O(r-a), setting to = - t (Uo)  > 0 and restricting 0 to 0 __< 0 < re/2, 

f[ 
to u(t)u'(t)e *r(-t~/3+~2t+~)G_(u(t)) 

t/(r, 0) = I m  cosh u(t)[(kZu(t)/tanh u(t)) - 1] ~ 
dt. (4.1) 

One obtains the un i form expansion of  this integral by expanding the coefficient o f  the 

exponent ia l  funct ion in the fo rm 

u(Ou'(t)G_(u(t)) 
cosh u(t)[(kZu(t)/tanh u(t)) - 11 ~ 

= C o -t- clt  -]- (t 2 -- aZ)H(t) 

and integrating te rm by term. We obtain only the leading te rm of  the expansion which 

can be shown to be the t e rm of  lowest order  [9]. In  this case the leading te rm is the first te rm 

since substituting t = + a in the above  one solves for  c o 

l { utu ' ( -a)G_(ut)  udu'(a)G_(ue) } 
Co = ~ - -  cosh ut[(k2ut/tanh ut) - 1] 4 + cosh Ud[(kZud/tanh Ud) -- 1] ~ 

which is non-zero since u'(t) is non-zero on the interval of  integration. Thus the leading 

t e rm of  the uni form expansion of  (4.1) is 

f 
- - t o  

t/(r, 0) = c o I m  e~r(-t3la+a2t+b~dt. (4.2) oo 
This can be expressed in terms of  the Airy funct ion [2] 

1 t i~ 
Ai(z) = ~ i  j _ i  ~ e-q3/3 +=q dq 

which is real for  z real. One merely extends the pa th  of  integrat ion in (4.2) f rom - t o to 
- 0% introducing an error  o f  O(r-1); then, per forming  the change of  variable q = - J r+ t ,  

one obtains 

t/(r, 0) = - 27ceor- ~ sin (br )Ai ( -  a2r~), 

valid in a finite ne ighborhood  of  the border :  ok -- 6 < 10l < 0~. We remark  that  the next 
t e rm in the expansion of  (4.1) will be of  order  O(r -~) and will involve the derivative of  

the Airy function. 
Fo r  large depth,  k ~ 1, the pat tern  closely resembles the ship-wave pat tern  for  infinite 

dep th  except reduced in amplitude.  To  show this we note  that  u o will be large. Hence,  
taking tanh - 1 for  u > Uo, letting v = ( k 2 u  - 1) ~ and v = - ( k Z u  - 1) ~ in the first and 
second integrals respectively, introducing the pa ramete r  N = rk -2, which is independent  
o f  h, and taking cos 0 > 0, (2.5) becomes 

~oo t/(r, 0) = - -2  Im (1 -t- V 2)  e i N ( c ~ 1 7 6 1 7 6  

_~ k4 cosh[k-2(1  --[- V2)] 
dr. (4.3) 

Journal of Engineering Math., Vol. 10 (1976) 1-21 



10 s  

We compare  (4.3) with the integral 

l aO r - i~[8 

tl(r, 0) = - C I m  (1 n t- V 2)  e iN(r o-v sin 0)(1 +v:)~dv 
d -  ~ e ~ / 8  

(4.4) 

where C > 0, which yields the wave ampli tude o f  the ship-wave pat tern  for  infinite depth, 
Ursell  [7]. One sees that  (4.3), which has the same s ta t ionary points  as (4.4), mus t  yield 

the same wave pat tern  except a t tenuated in ampli tude due to the presence of  the denomi-  

nator.  In  fact as k ~ 0 one has q(r, O) ~ O. 
Using the me thod  of  Chester  et al., Ursell [7], has obta ined a uni form expansion o f  

(4.4) near  the border  10] = c o t -  1 2x/2 of  the wave sector. One can do this in a quite similar 
way for  (4.3). The result is, o f  course, a special case of  our  previous result but  is given by 

a more  explicit expression. In  the previous nota t ion  one gets, setting Q = (1 - 8 tan 2 0) ~, 

3 -~ COS 2 0 
0 3 ~___ 

64 sin 0 

3 ~ cos z 0 
b = -  

32 sin 0 

- -  [(1 - Q/3)r + Q)~ - (1 + Q/3)~-(1 - Q)-~], 

[(1 - Q/3)~(1 + Q)'~ + (1 + Q/3)~(1  - Q)~],  

Co - 2~k4 sin~ 0 \ Q ,/ [ cosh{k-2[1  + �89 + Q)(1 - Q)-~]} 

(1 - Q) (1 + Q/3) 
+ cosh k- -t  Q)-Ij  , 

and the leading te rm of  the uni form expansion is 

~(r, O) = - 2rccoN -~ s i n ( b N ) A i ( -  aZN ~) + O(N-~)  

valid for  0 in a finite ne ighborhood  cot -1 2~/2 - 6 < ]0l _-< cot -1 2~f2. 

5.  F l o w  at crit ical  speed  

We now discuss the steady state flow for  large r at the critical speed k = 1. We recall that  

its existence has been demons t ra ted  in Theorem 1. We find that  the wave pat tern  has one 
componen t  (diverging) existing in the region 0 < 10] < ~/2 downs t ream f rom the obstacle. 
In  the region 0 < 101 _-< re/2 - 6 the wave ampli tude is shown to be of  order  O(r -~) using 
the ordinary  me thod  of  s ta t ionary phase. Near  the transverse line x = 0, tha t  is, for  
7z/2 - 6 =< 101 < re/2, the ordinary me thod  of  s tat ionary phase  does not  yield an expansion 
uni form in 0 so we use a me thod  of  Bleistein [8], obtaining a uni form expansion in terms 

of  Fresnel integrals. 
We investigate the distribution of  s ta t ionary points  o f  p_(u)  as 0 varies. In  the present  

case, g(u) in (3. I) can be writ ten in the fo rm 

[(u/tanh u) - 1]~[I + u/(cosh u sinh u)] 
g ( u )  = 

[(u/tanh u) - 1] + u tanh  u 
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Three dimensional flow over a submerged object 11 

and one finds that  g(u) is positive and decreasing on (0, oo) with limu-~o+ g(u) = oo and 

lim,_,co g ( u ) =  0. Thus  for  each value of  t a n 0  > 0, (3.1) has a single root  u = ua, 
0 < u d < oo which by Theo rem 3 contr ibutes in the downs t ream direction 0 < 0 < n/2, 
and moreove r  as tan 0 ~ oo one has u d ~ O. In  the transverse direction, cos 0 = 0, and  

(3.2) is not  valid but  then one can verify directly tha t  u = 0 is a s ta t ionary point  o f  the 
phase functions p•  0. However ,  since G• = 0, this s ta t ionary point  does not  

contr ibute  to the wave pat tern.  
As for  the asymptot ic  wave ampli tude:  within the right ha l f  plane, that  is, for  fixed 0 

with 0 < 101 < ~/2 the s ta t ionary point  u = ua yields a contr ibut ion o f  order  O(r-~). As 0 
varies, this contr ibut ion generates a diverging wave system whose level curves are given by 

rp_(u) cos 0 cons tan t~  0 < u < oo. 

tan 0 g(u) J 

Near  the transverse line x = 0, tha t  is for  0 with ~/2 - 6 < 10[ < re/2, the ordinary me thod  

of  s ta t ionary phase does not  yield an expansion uni form in 0 due to the proximi ty  o f  the 
s ta t ionary point  and  the endpoint  o f  the interval o f  integrat ion u = 0. Instead,  we use a 

me thod  of  Bleistein [8] to obta in  a uni form expansion.  
We first write q• = p• cot  0. Clearly, q_(u) has the s ta t ionary point  u = u a and 

as cot  0 ~ 0+, u e approaches  the endpoint  u = 0 of  the first integral in (2.5). Writ ing the 
phase functions and  the integrands o f  (2.5) in the fo rm 

q+_(u) = u(tanhu/u)~cotO+_ u 2 I U -  u3tanh u l ~ ,  

J •  G• F uz tanh  u -]~ 

cosh u L t-  r;u J ' 

one sees that  they can be defined for  u < 0 by the formulas  

q •  = -q~:(u), J •  = J.~(u) 

and will be analytic in a ne ighborhood  of  the entire real axis. Then,  going over  f rom u to 
- u  in the second integral, (2.5) becomes 

t/(r 0) = I m  J_(u)e~'~-(")sln~ - J_(u)e-~'~-(u)sin~ . (5.1) 
O0 CO 

Following Bleistein, we introduce a change of  variable u = u(t) so that  q_(u) goes over  
into a special quadrat ic  fo rm:  

q_(u(t)) sin 0 = - t 2 / 2  + at, a > 0 (5.2) 

where the pa rame te r  a characterizes the proximity  of  the s tat ionary point  and the endpoint .  
I t  has been shown [8] that  the t rans format ion  u = u(t) will be 1-1 f rom - oo < t < oo 
to - oo < u < 0% i.e. u'(t) ~ O, if a is chosen so that  u = u a corresponds  to t = a in u(t) 
which leads to 

a = (2q_ (ua) sin 0) ~. 
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One notes that a = a(O) ~ 0 as u n ~ O, i.e. as 0 ~ n/2_ .  (5.1) then becomes 

{jo fo } r/(r, 0) = Im ~ J_(u( t ) )u ' ( t )  e-~r(t2/2-"~ J_(u( t ) )u ' ( t )  elr(t2/Z-aOdt . (5.3) 
- -  c~  

We expand the coefficient o f  the exponential functions in the fo rm 

J_(u( t ) )u ' ( t )  = c o + e l t  + t(t - a)H(t) .  

We obtain only the leading term of  the expansion which can be shown to be the term of  

lowest order. Substituting t = 0 one obtains 

Co -= J_(u(O))u'(O) = J _ ( 0 ) u ' ( 0 ) .  

N o w  G_(0) (c.f. (2.5)) is equal to 1 as long as J0l < re/2. Differentiating (5.2) with respect 

to t and using L 'Hospi ta l ' s  rule, one gets 

- 1  
[ u ' ( a ) ]  2 - 

q"(Ud) sin 0 

and for a = ua = 0 

- 1  3 
[ u ' ( 0 ) ]  2 - 

q"(0) sin 0 2 sin 0 ' 

Then e0 = 3(2 sin 0)-~, 0 < 0 < re/2. Thus, going over f rom t to - t in the second integral, 
the leading term of  the uniform expansion of  (5.3) is 

~/(r, 0) = - c  o Im eim~/z+"~ + e-~( t2 /2-"~  . (5.4) 
0 0 

This can be expressed in terms of  the Fresnel integrals 

S(x )  = - -  sin q2 dq, C(x)  / COS q2 dq 
\ ~ /  Jo J 0 

for, setting p = (r/2)r in (5.4) and completing the square in the exponent, one finally gets 

q(r, O) = 2x/zc cor-r  - sin(aZr/2)C(aZr/2)] 

valid in a finite ne ighborhood re/2 - 3 < 0 < re/2. 

Using this expansion one can evaluate the limiting wave amplitude as the line transverse 

to the flow direction, 0 = ~z/2, is approached for  fixed r. In  fact, one sees that  as 0 ~ re/2_, 
i.e. as a ~ O, one has q(r, O) ~ O. 

6. Flow at supercritical speed 

We now discuss the steady state wave pat tern (2.5) for  supercritical speed k > 1. We find 

that  the pattern has one component  (diverging) existing in the region 0 < 10] < ok < re/2 
where Ok = t a n - l [ ( \  2 - 1)-~]. In  the region 0 < 101 < Ok,. - ~ the wave amplitude is o f  

order O(r-~). In  the region ok -- 5 =< 101 < 0~, we use the method of  Chester et al. to  
obtain a uniform expansion in terms of  the Airy function and we find that  in the limit 
as [0l ~ ok the wave amplitude is o f  order O(r-~). 
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Three dimensional f low over a submerged object 13 

We investigate the distribution of  stationary points o f  p_  (u) as 0 varies. In  the present 

case, g(u) in (3.1) can be written in the form 

[(k2u/tanh u) - 1]~(sech u + tanh u/u) 

# ( u ) =  k 2 _ ( t a n h u / u ) + t a n h  2 u + k  2 -  1 

and one finds that  g(u) is positive and decreasing on [0, oo) with #(0) = (k z - 1) -~ and 

lim,_.~ g(u) = 0. Thus for  each value of  tan 0 such that  0 < tan 0 < (k z - 1) -~, (3.1) has 

a single roo t  u - - u  a which by Theorem 3 contributes in the downstream direction 
0 < 0 < 0k where O k = t a n - l [ ( k  2 - 1) -~] and, moreover,  ue ~ 0 as tan 0 ~ (k z - 1) -~. 

For  tan 0 = (k 2 - 1) -~  one can verify directly that  p_(u)  has a stationary point  at u = 0, 

but  since G_(0) = 0, it doesn ' t  contribute to the wave pattern. 

As for  the asymptotic  wave ampli tude:  for  fixed 0 with 0 < [0[ < 0~, the stat ionary 

point  u = ua yields a contribution o f  order O(r-~).  As 0 varies this contr ibut ion generates 

a diverging wave system whose level curves are given by 

r p_(u)  cos 0 c ~  < u < ~ .  

tan 0 = #(u) J 

In  the region ok -- 3 _--< 101 < Ok, the stationary point  u = ua is near the endpoint  of  the 
interval o f  integration o f  the first integral u = O, and the ordinary method of  stationary 

phase does no t  yield an expansion uniform in O. In  this case, however, the method  o f  

Bleistein is not  suitable. This becomes evident when one writes the function p_(u)  in the 

form 

p_(u)  = u(tanh u/u) ~ - u[k 2 - (tanh u/u)] ~ tan 0 

and extends the domain  of  definition to u < O, One then has 

p _ ( - u )  = - p _ ( u )  (6.1) 

so that, in addit ion to u = ua, p_  (u) has a stationary point  at u = - ua, outside the interval 
o f  integration, and the two coalesce to the endpoint  u = 0 as tan 0 ~ (k z - 1) -~. Thus  

one actually has a case of  two coalescing stationary points;  the point  to which they coalesce 

just  happens to be an endpoint.  Hence it is appropriate  to use the method for Chester, et al. 
We choose a t ransformat ion u = u(t) so that  the phase funct ion goes over to a special 

cubic form. 

k -1 p_(u( t ) )cos  0 = - t 3 / 3  + aEt + b (6.2) 

where the parameter  a characterizes the proximity of  the stationary points. The transfor- 
mat ion  will be 1-1 for  - oo < t < 0% i.e. u'(t) # O, i f a  and b are chosen so that  t = - a ,  a 

correspond to u = -ua ,  Ud respectively, which leads to, in view of  (6.1), 

a 3 -= �88 -1 cos O[p-(ua) - p - ( - u a ) ]  = ~k -1 p - (ua )cos  0, 

b = �89 -1 cos O[p_(ua) + p _ ( - u a ) ]  = O. 

The expression (2.5) then becomes, neglecting the second integral which is o f  order  O(r-  1), 
and restricting 0 to (0, 0~) 

Journal of  Engineering Math., Vol. 10 (1976) 1-21 



14 J. Harband  

f s  U(t)u'(t) e i'( -o /3  + a~,) G_ (u(t)) dr. 
q(r, 0) = I m  cosh u(t)[(k2u(t) / tanh u(t)) - 1] ~r (6. 3) 

We expand the coefficient o f  the exponential  funct ion in the fo rm 

J(O = 
u(t)u'(O6_(u(O) 

cosh u(t)[(k2u(t) / tanh u(t)) - 1 ]~ 
= e o + el t + (t z - aZ)H(O 

and integrate te rm by term. We obtain  only the leading te rm o f  the expansion which can 
be shown to be the te rm of  lowest order.  In  the present  case, the leading te rm will be the 
second term, since substituting t = + a in the above,  one solves for  c o and c~ 

I 
c o = �89 + J ( - a ) ] ,  Cl = ~-a [J(a) - J ( - a ) ] .  

N o w  differentiating (6.2) with respect to t and using L 'Hosp i t a l ' s  rule one gets 

[u'(+_ a)] 2 = -T- 2a 

p _ . . (  + Ud)k-1 COS 0 

and, in view of  (6.1), one has u'(a) = u ' ( - a )  and therefore J(a) = - J ( - a ) ,  whence 

Co = 0 and c 1 = J(a)/a. N o w  Cl is non-zero for  all a > 0, and,  expanding u(t) abou t  
t = O, ud = u'(O)a + O(a z) f rom which one obtains 

lim c 1 = [u'(O)]2(k 2 - 1) -~ ~ 0. 
a-~0+ 

Thus the leading te rm of  the uni form expansion of  (6.3) will be 

q(r, O ) = c ~  I m f s  te~r(-~ 

This can be expressed in terms of  the derivative of  the Airy funct ion defined in Section 4. 
One first expresses it as an integral f rom - oo to ov since the integrand (including Im)  is 
even, and  then, letting q = - i r r t  one finally gets 

t/(r, 0) = - cl~r  -~  Re 
2~zi - i~  

q e ( -  q~/3 - ~ ~) dq = - e 17~r- ~Ai'(-- aZr~). 

F r o m  this one deduces that  liml01_.0~ ~/(r, 0) = l i m , . o ,  q(r, 0) = - c l n r - ~ A i ' ( O ) .  

Appendix A 

P r o o f  o f  Theorem 1. Letting p = 1, replacing q) by -~o for  - r c  < rp < 0, and setting 
T = t(g/h) ~ a n d  

p+_(u, ~o) = ku  cos (p + (u tanh u) ~, (A.1) 
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Three dimensional flow over a submerged object 15 

the time dependent  terms in (1.15) become 

l j'=foU2(tanhu/u)* 
qt(r, 0) = ~ o cosh u 

• . . . . .  + . . . . .  

( p + (u, p_ (u, ) 

where by hypothesis the path of  u-integration is deformed below (above) u = u(~o) when 
0 < ~o < 7r/2 (~r/2 < q~ < re). We shall estimate the double integral (A.2) as T ~ ~ by 
obtaining estimates on the u-integral which are uniform in ~o for  q~ in the interval of  inte- 
gration. These same estimates will then apply to the double integral. 

We wish to bring the integrals through the curly brackets. F rom (2.1) and (A.1), u(~o) is 

defined by 

u-2p+(u, = o. 

For  0 < ~o < re/2 one has u-lp+(u, ~o) > 0 for  all u > 0 so that  u(~o) is defined by 

u-lp_(u, ~o) = 0, i.e. 

k cos q~ = (tanh u/u) ~ (A.3) 

and only the second term in the curly brackets can have a pole. Thus, for  0 < ~o =< ~r/2, 
one can bring the integrals through the curly brackets and return to a straight path  through 
u = u(~o) in the u-integral of  the first term. Now sincep+(u,  q~) is strictly increasing, u > 0, 
0 < ~o < ~r/2, it has no stationary points and so, by the Riemann-Lebesgue  Lemma,  the 
u-integral of  the first term is O(T -1) for  0 < ~o < 7r/2. Similarly, the u-integral of  the 
second term will be O(T -~) for  re/2 < ~o < rc and one obtains, neglecting the terms of  
O(T-1) and going over f rom ~o to ~ - ~o in the first term 

1 ~n/21~~176 u2(tanhu/u) ' e iTp-(u'~~ [e- '  . . . . .  (o-0) 
qt(r, 0) = - 4~- j o  ~ Jo cosh u p_(u,  ~o~ 

+ e - ~,, cos( e + O ) ] du 

f o  uZ(tanh u/u)~ e-ir"-("'~') [el . . . . .  (~ -0 )+e~  . . . . .  (q'+~ (A.4) 
+ cosh u p_  (u, qg) 

where the path of  u-integration is deformed into a semi-circle of  radius e above (below) 
u = u(cp) in the first (second) integral. 

We now determine the stationary points o f p _ ( u ,  ~o) for  fixed % 0 __< ~o < re/2. Differ- 
entiating p_  (u, ~o) with respect to u, one finds that  p_  has a stationary point  u = u s defined 

implicitly by the equation 

k cos ~o = (tanhuJu~)~[ l+2ujsinh2u~ ] 2 "  (A.5) 

We will need to know the location of  u s with respect to u(~o). F r o m  (A.3) and (A.5) one has 

[tanh u(~o)/u(~o)]~ = (tanh uJu~)~ [ l + 2uj-finh 2us ] < (tanh uJus) ~ 
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where equality holds iff us = 0 --- u(go). F r o m  this one has the following al ternative:  

a) u(9) = u~ = 0 (iff k cos go = 1) (A.6) 

b) 0 < u~ < u(go) (iff 0 < k cos go < 1) 

and,  moreover ,  lim~-,oos-~(k-l)+ U(q~) = lim~_~cos-l(k-1)+ Us = 0. 
We now obtain  estimates on the u-integrals in (A.4) which are un i form in go. We first 

take the case k < 1. Then,  one has 0 < uo -<_ u(go) for  0 < go < n/2; hence, in view of  
(A.6), the pole u(q0 and the s tat ionary points  u~ are bounded  away f rom the origin and  
f rom each other. Thus  one can choose the radius e small enough that  0 < us < u(go) - e, 
0 < go < n/2, i.e. so that  us lies on the straight Section of  the pa th  between the origin and 

the semicircle. Then  the straight section [0, u(go) - e] o f  bo th  u-integrals yields a contri-  
but ion of  order  O(T -~) due to the s ta t ionary point  us, and the straight section [u(go) + e, ~ )  
yields O(T-1)  f rom the R iemann-Lebesgue  Lemma.  Both  of  these contr ibut ions are uni- 

fo rm in qg, 0 <- go < n/2. 
For  u on the semicircle, we expand p _  (u, go) abou t  u = u(go). For  the first u-integral in 

(A.4) one obtains 

u(~p) [tanh u(go)/u(go)] - i  I(tanh u/u')[,=,(~,)~ e i~+ + 0(5 2) p_(u, go) = 

= C e e  i~+ +O(e2 ) ,  C > 0 ,  n > ~ +  > 0  

and in the second integral 

p_(u, q~) = Ce e i~- + 0(~2), - n  < ~_ < O. 

Then  the t ime dependent  exponents  become 

a) iTp_(u, go) = CTee i(~+ +~/z) + TO(~2), (A.8) 

b) - iTp_(u ,  go) = CTee i(~--~12) + To(~E), 

for  the first and second u-integrals respectively. Both exponents  have negative real par t  
for  ~ sufficiently small. Therefore  the integrand of  bo th  u-integrals tends to zero exponen-  
tially on the semicircle as T - +  o0. Hence for  k < 1 the u-integrals are of  order  O(T -~) 
uniformly in go, 0 < go < n/2. Therefore  the double integral (A.4) is also of  order  O(T-~).  

We now consider the case k > 1. Then  one has 0 < u(go) < oo for  cos r =< k - t  and 
moreover  u(go) --* 0 as cos go ~ k - l _ .  Fo r  k -1 < cos go =< 1, p_(u, go) has no s ta t ionary 
point  nor  does u -~p_  (u, go) have a zero. Hence  for  these values o f  cp one can re turn  to a 
straight pa th  in the u-integral and thus the double integral for  0 _<_ u < o% k -~ < cos go _< 1, 
is O ( T - i )  by the R iemann-Lebesgue  Lemma.  N o w  for  cos go _-< k - 1  _ 6, ~ > 0, the pole 
u(go) and  s ta t ionary point  us are bounded  away  f rom the origin and  f rom each other,  e.f. 
(A.6), and one proceeds as in the previous case, k < 1, and finds that  the u-integral is 
O(T  -~) uniformly in go. Thus  the double integral for  0 __< u < 0% cos go _-< k -1 - 6, is of  

order  o ( r - §  
The main  difficulty occurs when k - 1  => cos go _-__ k - 1  _ 6 for  then u(go) and us coalesce 

to the origin as go ~ c o s - 1 ( k - 1 ) + ,  c.f. (A.6). For  this case we first take u on  the semi- 
circle, expanding p_(u, go) about  u(go) as in (A.8a, b). Our  previous choice of  constant  
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as q) varies is no longer suitable. In fact, since the center o f  the semicircle, u = u(q~), tends 

to the origin as q) ~ cos -a  (k -a )+  and the path o f  u-integration terminates at the origin, 

the radius e o f  the semicircle will have to diminish o f  order O[u(q0] as ~o ~ cos-~ (k-a)+  in 

order that  the semicircle remain on the path. Accordingly,  we make the following judicious 

choice o f  e: e = T-+u(q)), T > 1 and the exponents become, c.f. (A.8a, b), 

+ iTp_(u, ~o) = C1T ~ e i(~ +~/2) + O(TO), C a > 0, 

where as before n > ~+ > 0, - n  < ~_ < 0. N o w  the first term has negative real par t  

and the remaining terms do not  grow large with T and so the exponential functions will 
go to zero on the semicircle as T ~ ~ ,  uniformly in q~, k -1  > cos q3 > k - 1  _ 6. Thus 

the double integral for u on the semicircle and k - a  > cos ~o > k - a  _ 6 goes to zero 

exponentially as T ~  ~ .  

We now take u on the straight section [0, u(~p)(1 - T-+)] .  We expand (A.3) and (A.5) 

for  small u(~o) and u~ getting u s = u(q~)/3. Thus for  sufficiently large T, i.e. T > 4 ~, the 

stationary point  u, will be located on the above straight section, and moreover  coalesces 

to the endpoint  u = 0 as ~o ~ c o s - l ( k - a ) + .  To obtain an estimate, asymptotic  in T and 

uniform in ~0, k -  1 > cos cp > k - a  _ ~5, o f  the u-integral on the above straight section 

we turn to the uni form asymptot ic  method  of  Chester, et al. [6], c.f. Sec. 4. Writ ing the 

phase funct ion in the fo rm 

p_(u,  ~o) = u[k cos ~o - (tanh u/u) +] 

one sees that  it can be defined as an analytic funct ion in a ne ighborhood  of  the entire real 
axis by the formula  

p _  ( - u, e )  = - p _  (u, ~o). (A.9) 

Differentiating (A.9), it is evident that  p_  (u) has a stationary point  at u = - u s ,  outside the 

interval of  integration, in addit ion to that  at u = u~ and the two coalesce to u = 0 as 

~o ~ c o s - 1 ( k - 1 ) + .  We introduce the t ransformat ion u = u(t) defined by 

p_(u(t) ,  ~o) = t3/3 - aZt + b (A.10) 

where a = a(q~), b = b(q~), and require that  t = - a ,  a correspond to u = - u s ,  u s in u(t) 
which leads to 

a 3 = 3 [ p _ ( - u s ,  cp) - p-(us ,  r 

b = l [ p _ ( - u s ,  ~) + p-(us, ~0)], 

or, in view of  (A.9), 

a 3 = 3p_ ( -u~ ,  q0/2, b = 0. 

Substituting into (A.4) for  the values of  ~p and u we are considering, denoting 

q9 o = c o s - l ( k  - 1 -  6), qh = c o s - l ( k - 1 ) ,  
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18 J. Harband 

1 ( . ,~ (~ , t~  u2(t)[tanh u(t)/u(t)]~u,(t ) eiT(ta/3-a2t) 

I = 4re J ~ | o  t a  o cosh u(t) t3/3 - aZt 

�9 [ e -  i.(t)~ r o) + e -  i.(t)r ~o~(~, + o)] dt 

f l  ~ uZ(t)[ tanh  u(t)/u(t)]~u'(t) e-ir(t~/a-a~O 

+ cosh u(t) t3/3 - aZt 

�9 [eiU(t) . . . .  (~- o) + eiU(t)r cos(~o + 0)] dt } d~o (A. 11 ) 

where u(to) = u(~o)(1 - T -~) .  We expand the coefficients o f  the exponential  functions of  
T in the fo rm 

u2(t)[tanh u(t)/u(t)]~u'(t) [e+i,(t) . . . .  (e-0) + e+i,(t) . . . .  (e+0)] 
J+(t) = cosh u(t)[t3/3 - aZt] 

= CO+ + Cl+_t + ( t  2 - -  a2)H• 

where Co+ = Co+(q)), c1+ = c~+(~o), and H e ( t ) =  He( t ,  ~o). The leading te rm can be 
shown to yield the t e rm of  lowest order  in the expansion of  (A. 11). Substituting t = _+ a, 

one solves for  Co 

Co• = � 8 9 1 7 7  + J •  

Differentiating (A.10) with respect to t and using L 'Hosp i t a l ' s  rule 

[u'( + a)] 2 = 2a/p"_( +_ us), a r 0 

and since p"_( -us )  = -p"_(u~) f rom (A.9), one has u ' ( - a )  = u'(a). Another  appl icat ion 
of  L 'Hosp i t a l ' s  rule yields an expression for  u ' ( +  a) valid also for  a = 0 

[u'( _+ a)] 3 = Zip"( +_ us) = 2/p"(u,) 

where we have again used (A.9). One then gets 

3iuZ(tanh us/us)} u'(a) 
[sin(ru s cos(~o - 0)) + sin(ru s cos(~p + 0))] 

c~ + = - 2a a cosh us 

a n d e o _  = - C o +  = -Co.  
The leading te rm of  (A.11) is then 

I = (2re) -1 ico(~O)  sin[r(t3/3 - a2(q~)t)]dtd(p 
o 0 

or, letting q = T~t, 

• [~gal ~T~St~ 
I = ~T-~/27r) t  ic~ sin(q3/3 - a2(cp)T~q)dq&~ 

�9 ~ ~P0 

One can extend the pa th  of  the q-integral to ~ introducing an error  o f  O(T-1 )  by the 
R iemann-Lebesgue  L e m m a  since the only s ta t ionary point  o f  the phase is in [0, T~t~,] 

Journal of Engineering Math., Vol. 10 (1976) 1-21 



Three dimensional flow over a submerged object 19 

I = (T-r ic0( 9 sin(q3/3 z ~- - a (9)T~q)dqdg. 
o 0 

Now the q-integral is a continuous function of 9 for 9 in the range of integration, and it 
is a bounded function of T, for all T. To see this one expresses it in terms of the Airy 
function Bi(z) which is real for z real and is continuous and bounded for all real, non- 
positive z c.f. [2]. 

f : s in (q3 /3-aZTkq)dq=Bi( -a2T~)- f :e -q3 /3-a2T~qdq .  

The second term on the right is a continuous function of 9 and bounded in T. Hence, since 
Co(9) is easily seen to be continuous, T~I exists and is bounded in T. Therefore I = O(T-+). 

On the straight section [u(9)(l + T-§ ~ )  the u-integral will be O(T -~) uniformly in 9 
k-1 > cos 9 > k-1 _ 6, by the Riemann-Lesbesgue Lemma. 

Summing up, for k > 1, the lowest order contribution to the double integral (A.4) is 
given by (A.11), i.e. O(T-+), hence (A.4) will be of that order as T ~  ~ .  

A p p e n d i x  B 

Proof of Theorem 2. We separate (2.3) into two terms; in the first the u-integral is taken 
on the deformed part, Pn, of the path, and in the second on the straight parts, Ps. 

We first show that the second term is of order O(log r/r). Let 9* be any value of 9 in 
[ - ~ ,  ~] such that cos(9* - O) = O. Then for 9 with ]9 - 9*f ->- 6 > O, the u-integral 
will be of order O(r-1) uniformly in 9 by the Riemann-Lebesgue Lemma; hence so will 
the double integral. For ]9 - 9*[ =< 6 we use the notation 

1ha = {9 e [--ZC, ~]la < 19 -- 9"1 < b} 

and the integral becomes, choosing r large enough so that 6 > r-1 

The second integral on the right side of (B.2) is of order O(r -a) due to the path length of 
the 9-integral. The first we integrate by parts with respect to u letting J(u, 9) denote the 
coefficient of the exponential function in the integrand. Then writing cos(9 - 0) = 
= sgn(0 - 9*) sin(9 - 9*) and expanding the analytic functions J and J ,  about 9* one 
finally gets 

I f.sj(u,9) r . . . . .  ( -O)dud9 
J I6 r -  1 

= s g n ( 0 - 9 * ) f /  { J(O, 9 * ) + J ( u ( 9 ) - ~ , 9 * ) e  ir[u(e)-~]e~176 
" ]r - ",-1 sin(9 - 9*) sin(~o - 9*) - 
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J(u(9) + e, 9* )e  ~rt"(~)+'lc~176 

sin(~o - 9*) 

fe J"(u' 9*)e'r"c~176176 } - d u  + R( o - dq , .  
sin(9 - q~*) 

Where R(z) is regular at the origin. Now the integral of the first term in brackets is clearly 
zero. For  the second we make the estimate 

] sgn(0- o~_, J(u(~P)-e'~~162176176 (~p - ~p*) d9 

< 2 Max IJ(u(~o) - e, ~o*)1 r-1 /'1 ~'*+~ &o _ O(log r / r ) .  
- 1,r-~ Jr.+,-~ sin(q~- ~o*) 

In a similar way one shows that the entire integral above is of  order O(log r/r); hence the 
second term of (B. 1) is of that order. 

We now consider the first term of (B.1), breaking it up into the four terms: 

-n /2<qJ<~[2 -~/2__<tp_<~/2 /2_~[r =<~ /2__<[r _<~ 
Iq'-~~ ->~ I~ -~ '* I -  -<~ I~-~*  >-6 iq~-~o* -<3 

= I1 + I2 + I3 + I , .  

The integrals 12 and 14 are of order 0(3) due to the path length of  the ~o integral. Consider I1. 
The integrand, hence the integral, will go to zero exponentially as r ~ 0% if 

Im (u)cos (q~ - 0) > 0 

on the deformed section of the path. For I1 one has Im(u) < 0 since the path lies below 
the u axis. Hence for ~o such that cos (~o - 0) < 0 the integrand will go to zero. However, 
for those ~o such that cos(cp - 0) > 0, the real part of the exponent is positive and the 
limiting value of the integrand is not clear. To remedy this, we deform the path of  u inte- 
gration up through the singularity. Then, on the deformed section, one has Im(u) > 0, 
and the integrand will go to zero as r ~ ~ .  One gets, however, a contribution due to the 
residue at the pole u(q0. Treating 13 in a similar way and taking 6 arbitrarily small one 
obtains 

f ro/2 H(cp)kZuZ(q~) c o s  2 fP e_+ir.(,)eos(~-0) 
I~ = + i  dg, .I-~/z cosh u(~o)[k 2 cos 2 cp - sech 2 u(cp)] 

where H(9) = ~1 if cos(9 - 0) > 0 and u(q0 is defined 
0 otherwise 

taking the upper signs./3 is given by the lower signs. Adding Ia and 13 one obtains an 
expression for the first term of (B. 1): 

f] fe f,~/2 H(~o)kZu2(q~)cos2~oe,,~,)~os(~,-o) 
= - 2 I m  ~ e ~ s ~ -  ~ ~ se~h~ u ~ &o. 

a d - ~ / 2  

In view of (2.1) and (2.2) one finally obtains the expression (2.4). 
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